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Can you recognize the classifiers?
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Which of the three solutions requires the least number of
parameters for prediction at testing time?

KNN SVM GMM
A. GMM o 47.73%
B. KNN
C. SVM 13.64%
D. 1do not know 227%
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Which of the three solutions requires the least number of
parameters for prediction at testing time?

KNN is the most costly
as it requires to keep all
Datapoints at testing.

SVM requires 9 SVs, each 2D
- 9*2=18 parameters

- + 8 parameters for the o
- +1forb

M
f(x) = sgn z a;v'k(x,x") + b

i=1

GMM is the least costly as
It requires 2 spherical
Gauss fcts. Each fct is
represented by its 2-dim.

mean and its variance 2>
(2+1)*2=6 parameters
+ 2 priors on Gauss fcts
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How many Support Vectors (SV) do you need at minimum
when using linear SVM?
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How many Support Vectors (SV) do you need at minimum
when using linear SVM?
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At minimum one needs only 2 SV-s, one in each class.

SVM usually finds more than required number of SV as the standard
optimization problem is not constrained to find the minimum. .
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Is the solution unique?
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A. YES
B. NO
C. | do not know

2.56%
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Is the solution unique?

If o, =, =1

The vector w defines the separating
hyperplane. It is determined by a
linear combination of selected training
points, the support vectors.
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Is the solution unique?
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Convex optimization has a global optimum but several solutions may have
the same optimum on the objective function. Here the same separating
plane can be found when using different combinations of datapoints. 10
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Is the solution unique?
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C. | do not know

2.44%
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Is the solution unique?
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The solution is not unique either but as data become more complex, less
combination will lead to global optimum. Only redundant points may be
discarded from one run to the next.
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Will the number of Support Vectors (SV) change
as we have more datapoints?
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Will the number of Support Vectors (SV) change
as we have more datapoints?
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In general, the SVs may be different, but if we have the same number of
datapoints close to the border of the margin, the SV-s may be the same, as
only the datapoints at the border of the margin matter.

14
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Will the number of Support Vectors (SV) change
as we have more datapoints?

Adding datapoints away from the boundary will not affect classification.

15
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Will the number of Support Vectors (SV) change
as we have more datapoints?
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Will the number of Support Vectors (SV) change
as we have more datapoints?

Barely as the boundary is not affected

17
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Will the number of Support Vectors (SV) change
as we have more datapoints?
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Will the number of Support Vectors (SV) change
as we have more datapoints?

Yes, many new SV-s are added. To maintain the boundary around the regions
with few datapoints requires a tight fit This implies to use a small kernel
width. As a result, each SV has only a local influence.

19
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Non-Linear Classification

The decision function is given by:

f(x)=sgn iaiyik(x,x‘ﬁb

=1

How can we build the decision boundary?
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The decision function is given by:

f(x)= sgn(éaiyik(x,x‘ﬁbj

=]

RBF (Gaussian) kernel: k(x,xi) =e 20* ,0€R
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The decision function is given by:
f(x)= sgn(alylk(x, xl)+a2y2k(x,x2)+b)
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Draw the decision boundary?
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Solution
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Draw the decision boundary?
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Draw the decision boundary?




APPLIED MACHINE LEARNING

Multi-Class SVM

Compute the class label in a winner-take-all approach:

j= argmax(Zy o'k (X, x )+b‘j

=1..K =1
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Draw the decision boundary (assume RBF kernel)?
28
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Multi-Class SVM

2nd boundary argmax red against white i ‘ — ‘ ‘
; | | | ; ; ! ! Red class against the other 2
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Multi-Class SVM

Solution ~ equivalent to linear SVM
30
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Solution ~ equivalent to linear SVM
31
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Multi-Class SVM

Discuss effect of kernel width o

Compute the class label in a winner-take-all approach:

J=arg max
j=1,..K

k (x, X )
%/_/
~0 when |x—xi|—o0

+b!

=arg max(bj)

j=1,...K

The kernel width does not affect this boundary except when very far from the datapoints where

numerically the RBF function becomes zero and prediction is based on b

32
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Multi-Class SVM

Large 0 =0.1

Solution ~ equivalent to linear SVM
33
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Multi-Class SVM

Medium o =0.01

Far from datapoints, the red class labels wins.
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The smaller the kernel width, the earlier in space the wrong label appears,
as the RBF vanishes faster. 35
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Multi-Class SVM
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Draw the decision boundary (assume RBF kernel)?
36
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Multi-Class SVM

Solution




