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Launch polling system

https://participant.turningtechnologies.eu/en/join

Acces as GUEST and enter the session id: appliedml2020
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Can you recognize the classifiers?

? ? ?
KNN                                    SVM                                     GMM
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Which of the three solutions requires the least number of 

parameters for prediction at testing time?

A. GMM

B. KNN

C. SVM

D. I do not know

KNN                                    SVM                                     GMM
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Which of the three solutions requires the least number of 

parameters for prediction at testing time?

KNN is the most costly

as it requires to keep all

Datapoints at testing.

KNN                                    SVM                                     GMM

SVM requires 9 SVs, each 2D

→ 9*2=18 parameters

→ + 8 parameters for the a

→ +1 for b

GMM is the least costly as 

it requires 2 spherical 

Gauss fcts. Each fct is 

represented by its 2-dim. 

mean and its variance →

(2+1)*2=6 parameters

+ 2 priors on Gauss fcts
f(x) = 𝑠𝑔𝑛 ෍

𝑖=1

𝑀

𝛼𝑖𝑦
𝑖𝑘(𝑥, 𝑥𝑖) + 𝑏
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How many Support Vectors (SV) do you need at minimum

when using linear SVM?

A. 2

B. 3

C. 4

D. I do not know
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At minimum one needs only 2 SV-s, one in each class.

SVM usually finds more than required number of SV as the standard 

optimization problem is not constrained to find the minimum.
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How many Support Vectors (SV) do you need at minimum

when using linear SVM?
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Is the solution unique?

A. YES

B. NO

C. I do not know



APPLIED MACHINE LEARNING

9

Is the solution unique?
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The vector w defines the separating 

hyperplane. It is determined by a 

linear combination of selected training 

points, the support vectors.

3 3,  1x y =

4 4,  1x y =

1 2If 1a a= =
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Convex optimization has a global optimum but several solutions may have 

the same optimum on the objective function. Here the same separating 

plane can be found when using different combinations of datapoints.

Is the solution unique?
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Is the solution unique?

A. YES

B. NO

C. I do not know
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Is the solution unique?

The solution is not unique either but as data become more complex, less 

combination will lead to global optimum. Only redundant points may be 

discarded from one run to the next.
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Will the number of Support Vectors (SV) change 

as we have more datapoints? 

A. YES

B. NO

C. I do not know
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In general, the SVs may be different, but if we have the same number of 

datapoints close to the border of the margin, the SV-s may be the same, as 

only the datapoints at the border of the margin matter. 

Will the number of Support Vectors (SV) change 

as we have more datapoints? 
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Adding  datapoints away from the boundary will not affect classification.

Will the number of Support Vectors (SV) change 

as we have more datapoints? 
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Will the number of Support Vectors (SV) change 

as we have more datapoints? 

A. YES for a and b

B. YES for a, NO for b

C. NO for a, YES for b

D. NO for a and b

E. I do not know

(a) (b)
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Will the number of Support Vectors (SV) change 

as we have more datapoints? 

Barely as the boundary is not affected
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Will the number of Support Vectors (SV) change 

as we have more datapoints? 

A. YES for a and b

B. YES for a, NO for b

C. NO for a, YES for b

D. NO for a and b

E. I do not know

(a) (b)
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Will the number of Support Vectors (SV) change 

as we have more datapoints? 

Yes, many new SV-s are added. To maintain the boundary around the regions 

with few datapoints requires a tight fit This implies to use a small kernel 

width. As a result, each SV has only a local influence.
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Non-Linear Classification

How can we build the decision boundary?

( ) ( )
1

The decision function is given by:
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( ) ( )
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The decision function is given by:

,
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f x sgn y k x x ba
=

 
= + 

 


( ) ( ) ( )( )1 2

1 1 2 2

The decision function is given by:

, ,f x sgn y k x x y k x x ba a= + +

1 2What are ,  and ?ba a

RBF (Gaussian) kernel: 𝑘 𝑥, 𝑥𝑖 = 𝑒
−

𝑥−𝑥𝑖

2𝜎2 , 𝜎 ∈ ℝ.
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Draw the decision boundary assuming equal effect of both points
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Draw the decision boundary?
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Solution

Draw the decision boundary?
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Draw the decision boundary?
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Solution

Draw the decision boundary?
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Multi-Class SVM

Draw the decision boundary (assume RBF kernel)?

( )
1,... 1

Compute the class label in a winner-take-all approach:

j= ,  arg max i i

M
j j

i
j K i
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 


Discuss effect of kernel width 
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Multi-Class SVM

Red class against the other 2

Green class against the other 2

White class against the other 2

1st boundary argmax red against green

2nd boundary argmax red against white

3rd boundary argmax green against white
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Multi-Class SVM

Solution ~ equivalent to linear SVM
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Multi-Class SVM

Solution ~ equivalent to linear SVM
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Multi-Class SVM

The kernel width does not affect this boundary except when very far from the datapoints where 

numerically the RBF function becomes zero and prediction is based on b 

Discuss effect of kernel width 

( ) ( )
1,... 1,...1

~0 when 

Compute the class label in a winner-take-all approach:

j=  =arg max ar a, g m xii
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Multi-Class SVM

Solution ~ equivalent to linear SVM

Large 0.1 =
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Multi-Class SVM

Far from datapoints, the red class labels wins.

Medium 0.01 =
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Multi-Class SVM

The smaller the kernel width, the earlier in space the wrong label appears, 

as the RBF vanishes faster. 

Small 0.001 =
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Multi-Class SVM

Draw the decision boundary (assume RBF kernel)?
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Multi-Class SVM

Solution


